Experiencia de Predicción subestacional del CPTEC/INPE en Sudamérica

Caio. A. S. Coelho, Bruno S. Guimarães, Paulo Y. Kubota, Carlos F. Bastarz, Dayana C. de Souza , Silvio N. Figueroa, José P. Bonatti, Felipe M. de Andrade (CPTEC/INPE)

Steven Woolnough (Univ. of Reading)

- Configuración y evaluación del Modelo Atmosférico Global CPTEC/INPE para predicciones subestacionales
- Evaluación comparativa del desempeño del model CPTEC/INPE frente a modelos de proyectos de predicción subestacional a estacional (S2S)
- Ejemplos de productos de predicción subestacional: Nuevo portal web CPTEC/INPE
- Consideraciones finales

Taller virtual de Predicción Subestacional - Base de predicciones históricas

Organizado por SISSA/CRC-SAS con la colaboración del CRC-OSA, 27 de septiembre 2023

Configuration and assessment of CPTEC/INPE Global Atmospheric Model for sub-seasonal predictions

Guimarães, BS, CAS Coelho, SJ Woolnough, PY Kubota, CF Bastarz, JP Bonatti, SN Figueroa and DC de Souza, 2020: Configuration and hindcast quality assessment of a Brazilian global sub-seasonal prediction system. QJRMS. 146, 728, Part A, 1067-1084

What is the most adequate model configuration for producing predictions 1 to 4 weeks ahead?

Model: Brazilian Global Atmospheric model [BAM (Figueroa et al., 2016)] currently used at CPTEC/INPE for numerical weather and seasonal climate predictions

This is the first BAM outcomes for sub-seasonal predictions aiming to determine which model configuration presents the best performance for this time scale: Aligned with WWRP/WCRP S2S project

Special attention is given to characteristics such as vertical resolution, deep convection and boundary layer parameterizations as well as soil moisture initialization

Chosen horizontal resolution: T126 (~100 km)

Hindcast ensemble produced twice a month for 12 extended austral summers (Nov-Mar): 1999/2000 to 2010/2011

BAM-1.2 configuration matrix for sub-seasonal predictions

	Vertica	llevels	Conv	vection	Bounda	ry layer	Soil mo	oisture
Configurations			parameterization		parameterization			
eennguraarene	42	64	Revised Simplified Arakawa-Schubert	Modified Grell-Dévényi	Bretherton-Park (moist scheme)	Modified Mellor-Yamada (dry scheme)	Climatology	GLDAS2
42ABC	42		Α		В		С	
64ABC		64	Α		В		С	
42ABG	42		Α		В			G
42GBC	42			G	В		С	
64GBC		64		G	В		С	
42AMC	42		Α			М	С	

Corr. btw predicted and observed precipitation anomalies for the six Guimarães et al. (2020) Week-1 Week-2 Week-3 Week-4

Global mean correlation for precipitation anomalies averaged over 60°N and 60°S

Guimarães, BS, CAS Coelho, SJ Woolnough, PY Kubota, CF Bastarz, JP Bonatti, SN Figueroa and DC de Souza, 2020: Configuration and hindcast quality assessment of a Brazilian global sub-seasonal prediction system. QJRMS. 146, 728, Part A, 1067-1084

How does CPTEC/INPE model compare with S2S project models?

Guimarães, BS, CAS Coelho, SJ Woolnough, PY Kubota, CF Bastarz, JP Bonatti, SN Figueroa and DC de Souza (2021) An inter-comparison performance assessment of a Brazilian global sub-seasonal prediction model against four sub-seasonal to seasonal (S2S) prediction project models, *Climate Dynamics*. 56, 2359–2375.

This study performed a global assessment of CPTEC/INPE model (BAM-1.2) when producing sub-seasonal predictions, focusing on an inter-comparison with four S2S project models (JMA, ECCC, ECMWF and BoM)

Special attention is devoted to performing a fair comparison between CPTEC/INPE and these four S2S project models in terms of using the same hindcast samples size, the same hindcast period (1999/2000-2010/2011) and the same number of ensemble members

Main characteristics of investigated models

Common ensemble size: 4 members of all models (det. assessment of ens. mean) 11 members for CPTEC, ECMWF and BoM (prob. assess.)

Corr. btw predicted and observed precipitation anomalies for CPTEC/INPE and S2S models

with 4

• All models show similar correlation patterns

 Corr. high during first week in most regions and drops rapidly as lead time increases

• High corr. in first two lead times (part. at week-1) assoc to the pred. prov. by the ICs, high corr. in last two lead times over eq. Pac. assoc. to pred. prov. by ENSO and the MJO

• In general, CPTEC corr. values are larger (smaller) than BoM (ECMWF) and broadly comparable to JMA and ECCC models

Global (60°N – 60°S) and South America (0°–30°S, 55°W–35°W) mean corr. and RMSE (mm/day) btw predicted and obs. prec. anoms.

- All models show a similar drop (rise) in corr. (RMSE) as a function of lead time
- ECMWF (red line) shows the best performance followed by JMA

•CPTEC/INPE (black line) has similar performance to the other models over global and South America region

Area under ROC curve (AROC) for CPTEC and S2S models: event pos. precip. anom.

All models with 11 members

- AROC computed for probabilistic predictions for the event positive precipitation anomaly for assessing discrimination ability
 - The three models have comparable AROC spatial patterns

ROC area for Tropical (30°N – 30°S) and South America (0°–30°S, 55°W– 35°W) regions: mean values for event positive precipitation anomalies

• CPTEC, ECMWF and BoM models show AROC values above 0.5 for all four lead times

• ECMWF ranks as the best model, followed by CPTEC and BoM

Experimental CPTEC/INPE sub-seasonal precipitation prediction for 14 days accumulation (5-18 Jan 2022)

Reasonable performance in representing the observed SACZ and precipitation anomalies over northern NE and south Brazil

New CPTEC/INPE sub-seasonal prediction web portal

PREVISÃO SUBSAZONAL

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

http://subsazonal.cptec.inpe.br

Previção Availação Downloads Downloads Downloads Downloads						
Regiões:	Varlàvels:	Campos:	Produtos:	Data inicialização:		
Giobal	Precipitação Calibrada	Probabilidade do Tercil Mais Provável	7 dias			

Forecasts issued Every Wednesday for weeks 1 to 4, fortnights 1 and 2, 21 and 30 days Verification products produced using hindcasts over the 1999-2018 period (20 Years)

Calibrated predictions based on linear regression of ensemble mean forecasts on observed precipitation

New CPTEC/INPE sub-seasonal prediction web portal

PREVISÃO SUBSAZONAL

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

http://subsazonal.cptec.inpe.br

Home Tempo Clima Previsão Numérica Satélite Ondas Dados Observacionais Instrumentação Bacias Qualidade do Ar Pós Graduação 🛒 👘

💿 Português 🛛 🔤 English

Forecasts issued Every Wednesday for weeks 1 to 4, fortnights 1 and 2, 21 and 30 days Verification products produced using hindcasts over the 1999-2018 period (20 Years)

Calibrated predictions based on linear regression of ensemble mean forecasts on observed precipitation

PREVISÃO SUBSAZONAL

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

http://subsazonal.cptec.inpe.br

New forecast and verification sub-seasonal prediction products

PREVISÃO SUBSAZONAL

http://subsazonal.cptec.inpe.br

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E INOVAÇÃO

Home Tempo Clima Previsão Numérica Satélite Ondas Dados Observacionais Instrumentação Bacias Qualidade do Ar Pós Graduação 🖄 e 😔 Portugu

💿 Português 🛛 📟 English

Forecasts issued Every Wednesday for weeks 1 to 4, fortnights 1 and 2, 21 and 30 days Verification products produced using hindcasts over the 1999-2018 period (20 Years)

Calibrated predictions based on linear regression of ensemble mean forecasts on observed precipitation

6ÓW

CPTEC/INPE and FUNCEME multi-model ensemble sub-seasonal precipitation predictions

45

40

30

20

10

PREVISÃO **SUBSAZONAL** Multimodelo

Previsão	Verificação
MODELOS:	
Multimodelo	-
PRODUTOS:	
 Precipitação 	
Probabilidade	
REGIÃO:	
América do Sul	.
ANO DE PREVISÃO	:
2023	.
DATA DE INICIALIZA	AÇÃO:

_		
	122-06-28	

PERÍODO DE PREVISÃO:

14	dias	

PREVISÃO SUBSAZONAL - MULTIMODELO CALIBRADO PROB (%) CHUVA ACIMA DA MÉDIA - Início: 28/06/2023 28/06/2023 - 11/07/2023 (14 dias) 10°N 90 80 70 10°5 60 55

20°S

30°5

40° S

50°S

60° 90°W

80°W

70°W

Global, South America,

60°W

Modelos: BAM-1.2/CPTEC, CFSv2/NCEP, GEFSv12/NCEP, ESRL/NOAA (Fonte: SubX e CPTEC/INPE)

50°W

Products for the following regions:

Northeast Brazil and Ceará State

40°W

30°W

Models:

BAM-1.2 (INPE/CPTEC) CFSv2(NCEP)[SubX] GEFSv12(NCEP)[SubX] FIM (ESRL/NOAA) [SubX]

Calibrated preditions based on linear regression of the multi-model ensemble mean of the 4 models on GPCP observed precipitation

Forecast and verification products for: Weeks 1 to 4 Fortnigh 1 and 2 30 and 44 days

Calibration and verification performed using 18 years of hindcasts (1999-2016)

http://www.funceme.br/dashboard/subsaz_forecast

Final remarks

• Configured CPTEC/INPE model and assessed hindcast quality of INPE/CPTEC, JMA, ECCC, ECMWF and BoM models for austral summer sub-seasonal predictions aiming to perform an inter-comparison of CPTEC sub-seasonal predictions (weekly precip. and MJO) with consolidated S2S models.

• The weekly precip. anom. hindcasts assessment revealed that CPTEC/INPE model has performance comparable to the other investigated models for the four examined lead times

• In general, ECMWF showed the best performance for both deterministic and probabilistic predictions

• Results suggest that there is scope to improve CPTEC/INPE prediction system, likely by a combination of including coupling to an interactive ocean, improving resolution and model parameterization schemes, and better methods for ensemble generation

• Experimental sub-seasonal predictions produced with CPTEC/INPE in 2022 showed encouraging results

• CPTEC/INPE developed a web portal and is making available real time sub-seasonal predictions (Global and over various continental regions, including South America)

• CPTEC/INPE and FUNCEME developed a multi-model sub-seasonal prediction system and are making available real time sub-seasonal predictions (Global, over South America, Northeast Brazil and Ceará)

Thank you for your attention

caio.coelho@inpe.br